# Setup Your API Connection in R Sys.setenv(CENSUS_KEY= "insert key here") readRenviron("~/.Renviron") Sys.getenv("CENSUS_KEY") # What Packages to Download install.packages("dplyr") install.packages("censusapi") library(dplyr) library(censusapi) # How to View Available APIs apis <- listCensusApis() View(apis) # How to View Metadata census_metadata_groups <- listCensusMetadata( name="acs/acs5", vintage="2018", type="groups") View(census_metadata_groups) # How to View Geographies census_metadata_geography <- listCensusMetadata( name="acs/acs5", vintage="2018", type="geographies", group="B15001") View(census_metadata_geography) # How to View Variables census_metadata_variables <- listCensusMetadata( name="acs/acs5", vintage="2018", type="variables", group="B15001") View(census_metadata_variables) # How to Filter Out Annotations and Margin of Errors census_metadata_variables <- census_metadata_variables %>% filter( grepl("EA",name)==FALSE, grepl("MA",name)==FALSE, grepl("M",name)==FALSE) View(census_metadata_variables) # How to Filter Down to 18 to 24 Year Olds census_metadata_variables <- census_metadata_variables %>% filter(grepl("18 to 24",label,ignore.case=TRUE)) View(census_metadata_variables) # How to Query a Census API census <- getCensus( name="acs/acs5", vintage="2018", vars=c("NAME", "B15001_003E","B15001_004E","B15001_005E", "B15001_044E","B15001_045E","B15001_046E"), region="state:*") View(census) # How to Refrence the Variable List variable_list <- c("B15001_003E","B15001_004E","B15001_005E", "B15001_044E","B15001_045E","B15001_046E") census <- getCensus( name="acs/acs5", vintage="2018", vars=c("NAME",variable_list), region="state:*") View(census) # How to Query Only Kansas by County variable_list <- c("B15001_003E","B15001_004E","B15001_005E", "B15001_044E","B15001_045E","B15001_046E") census <- getCensus( name="acs/acs5", vintage="2018", vars=c("NAME",variable_list), region="county:*", regionin="state:20") View(census) # How to Mutate the Variables to Get Percent Without Diploma census_clean <- census %>% transmute("county"=NAME, "total_male_18_to_24"=B15001_003E, "total_male_no_diploma_18_to_24"= (B15001_004E+B15001_005E), "percent_male_no_diploma"= (B15001_004E+B15001_005E)/B15001_003E, "total_female_18_to_24"=B15001_044E, "total_female_no_diploma_18_to_24"= (B15001_045E+B15001_046E), "percent_female_no_diploma"= (B15001_045E+B15001_046E)/B15001_044E) View(census_clean) # How to See Top Three for Male and Female top_three_male <- census_clean %>% select( county, percent_male_no_diploma, total_male_18_to_24, total_male_no_diploma_18_to_24) %>% filter(percent_male_no_diploma!="Inf") %>% top_n(3,percent_male_no_diploma) View(top_three_male) top_three_female <- census_clean %>% select( county, percent_female_no_diploma, total_female_18_to_24, total_female_no_diploma_18_to_24) %>% filter(percent_female_no_diploma!="Inf") %>% top_n(3,percent_female_no_diploma) View(top_three_female)